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ABSTRACT 

A self-consistency or bootstrap principle is suggested to determine 

the structure of the Pomeranchuk singularity in the neighborhood of 

J=1 and t=O. The ingredients in this are a Reggeon field theory which 

we require to be renormalizable and infrared free in the sense of the 

renormalization group. This guarantees that the input singularity 

reproduces itself near J=1, t=O with small computable corrections. 

Several examples of physical significance are discussed. 
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Reggeon field theories1 provide a natural way to implement multi- 

particle crossed channel unitarity as concisely expressed in the discon- 

tinuity formulae across J-plane cuts. ‘ In such a theory a Reggeon is 

a quasi-particle in two space and one time dimension carrying two 

momentum c and energy E=i -J, which “on shell” are related by 

E(T) = 1 - c(t = - 1 T 1 ‘). The study of the infrared limit E * 0, < + 0 

provides the behavior of t-channel partial wave amplitudes in the 

J=I-E-i, t= -1; I2 * 0 regime important for diffraction scattering. 

When the Reggeon is the Pomeranchuk singularity (called l ), then the 

E,; relation is such that E(q=O) = 1 - ~(0) = 0, and we have a massless 

particle theory. One must then sum to an infinite order of perturbation 

theory to discover the full infrared structure of the interacting theory. 

This is most efficiently done using renormalization group methods. 3.4 

In formulating these field theories both the choice of the bare theory 

and the interaction is rather much at one’s disposal. In part to reduce 

this ambiguity and in part to provide a tachnique to select out acceptable 

diffraction theories we explore here a self-consistency or bootstrap 

principle for Reggeon field theories. In particular we suggest that 

satisfactory theories must be (I) infrared free in the sense of the 

renormalization group and (2) renormalizable. After we discuss these 

properties we will examine several physically motivated examples to 

exhibit the power of the bootstrap. 

The formulation of Reggeon, indeed most, field theories begins with 
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a bare propagator Go which has poles in momentum space with an 

equivalent Lagrange density in configuration space. The unitarity relation 

for proper vertex functions of the theory expnesses them as integrals 

over Im Go, a delta function for poles, and other proper vertices. 

We will specify our bare theories by GO(E, T) and.some interaction of the 

underlying Reggeon field 6(x”, t ). If Go does not consist of poles, then 

(1) one replaces the delta function in the unitarity relation by Im Go and 

(2) one must imagine that Go arises from the solution of an interacting 

field theory Lo = LFR~EE + L4 where LFREE does have poles in its 

propagator, and L1 is whatever one requires to produce the chosen Go. 

To this, some interaction LI is now added. To be specific let us con- 

centrate on adding a triple 2 coupling 

LI =-b &t)3 (1) 

or 

L 
I 

= -xo,(v$)2$ (2) 

With one coupling the n-point proper vertex functions, r %i+ 

satisfy a renormalization group equation4 

a -- 
5 at MY+- + (; y(y) - D,++ 5Ei,ri,y) = 0 (3) 

where y is the dimensionless coupling made from A,Dr , the ordinary 

dimensions of l?(n), and p and yIthe usual renormalization group functions. 

The solution to (3) involves y(n ) satisfying 
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* = -P(?(rl)) (4) 

and is 

+)(~Ei,$,y, = r(n)(Ei?+-n))exp dn’ [By - yv(~(n’Hl, 

with n = log 5. The first issue is the behavior of 9(-n ) as n -f - m 

or 5 -t 0. p(y) is 

p(y) = Ay + By3 + . . . (6) 

in perturbation theory. If A > 0, then the point y=O is an infrared stable 

pointandT(-n)*Oas n-+-m. This means that the infrared limit of 

.(n) can be evaluated in perturbation theory around the theory 

characterized by Go. If A = 0, the sign of B may always be chosen 

positive because X0 may be pure imaginary. Indeed, Gribov’s signature 

analysis indicates it must be. 
1 We ask, then, that AZ 0. This is the 

key to the renormalization groupbootstrap which yields the input theory 

plus small computable corrections in the infrared limit: 

G(S E.;;‘> Y) - 
5-O 

GO@, ;‘, + O@- r~)~) (6) 

Renormalizability is a more elusive aspect, since the theory has 

really been formulated in the neighborhood of E=O, c=O to begin with, 

We view it here as an economy which allows us to introduce no further 

parameters beyond what appears in Go and the coupling X. Rigorous 

arguments against simply cutting off the theory at some “large” E and 
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q don’t exist to my knowledge. That cutoff certainly detracts from the 

appeal of the theory and adds unwanted parameters. Although some 

experience4 shows that elementary cutoff procedures do not essentially 

modify the infrared behavior, we will pursue the bolder tack of dispensing 

with them. 

Finally a word about the triple1 interactions (1) and (2). Heuristic 

arguments based on phase space in the infrared limit and detailed cal- 

culations in Refs. 3 and 5 lead one to eliminate higher order polynomials 

in eas less important as E, T-0. High. enough order polynomials are 

discarded on grounds of renormalizability. In any case the triple 

conpling is of enough physical interest that one must consider it first. 

To determine the renormalizability of a theory we examine the 

superficial degree of divergence, 6 , of its Feynman graphs. A diagram 

with r!? external lines, Yinternal lines, yloops, and %ertices has 

6 =dg+ aCF-pf .(7) 

where d is the dimension of the integration, a is the power of momenta 

at the vertices and p is the power of momenta in G -1 
0 * Using the identities 

2y-t &? =32;‘and z= y+4 -7 

we have 

6 =d+F]a+ y[ - F(dmp). 

(8) 

(9) 

For renormalizability we certainly must ask that 



-6- NAL-Pub-74/42-THY 

and 

a+ d-3p 
2 

5 0, 

d-p> 0 

(10) 

(11) 

so that only a finite number of proper vertices have 6 2 0 and need 

subtraction. Further we’ll want b (8 = 4) < 0 for the minimum r 

so no quartic or higher counter terms are needed in L = Lo + LI. 

Our first example is suggested by studies of s-channel unitarity 

of which the multiperipheral 
6 

bootstrap or the self-consistent absorption 

model7 is a suggestive example. In s, t space we choose an amplitude 

with absorptive part 

A(s,t) = s(log s)c 
Jv(ROGlog s) 

(RofiIV ’ 
(12) 

where a scale for so has been omitted and R. is some constant. The 

total cross section coming from (12) behaves as oT(s) - (log s) 
O+Y 

. 

GO(E, T) is evaluated by the usual Mellin transform 

m 
- 2 

GO(E, ;) = 
I 

d(log s) e 
E log s A(s,t= - 1q 1 ) 

S 

1 

(43) 

The renormalization procedure for our “massless” theories involves a 

normalization energy E,“. Using this and remembering one must make 

separate dimensional considerations for E and q dimensions, the dimension- 

less coupling is found to be 
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A (ENI 
a- +(o+v) 

yWN) = 
(R) 

l+a 

Since p(y) is defined by 

P(Y) = EN 
a 

- y(EN) > aE 
N 

we see that the A of Eq. (5) is 

A =a- ~(u+v), (16) 

so 

2 0-t~~ -a 
3 (17) 

for infrared freedom. d=3 and p = 1 + u + vfor this theory, so (10) and 

(Ii) require 

$a50 +v<2. (18) 

Amusingly enough the upper limit in (18) is just the Froissart bound! 

Together our constraints say 

O+Y= z a, 
3 (19) 

and a that is acceptable. For the nonderivative coupling of Eq. (1) 

a=O, and c + Y = 0. The interesting particular case of this with 

o = v = 0 has been explored in detail in Ref. 8. One finds that this 

renormalization group bootstrap leads to 

$,:,“, b 1 _ - fAB/log s (log log s ) 
+ +... 

s-em yAyB 
, (20) 
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where fAB need not factorize as the first term does. The derivative 

coupling of Eq. (Z), which is crucial for the multiperipheral bootstrap, 6 

is unacceptable as it stands, because proper vertices with up to nine 

external legs need subtractions! 

Next consider scaling forms of GO(E, <) suggested by the work in 

Refs. 3 and 4: 

PI 
Go1 (E,;) = E (1 + bo~2,Ep2 ) (24) 

with ~4, p2 > 0. Noting that the dimension of b. is E 
p2 

1: r2> we find 

d = 2 + Z/p2 and p = 2pi/p2. Infrared freedom requires 

2 
3p1- d 

p2 l+a (22) 

and renormalizability, 

3Pf - 1 

PI 
-1 <p2 5 

l+a (23) 

Again these yield a unique solution 

p2 = (3~~ - 4)/I +a. (24) 

The theory with a=0 (constant bare triple z ) is fine for any pi, p2 > 0. 

In order to have cT (s) - (log 
P, -1 

s) not fall, we ask that pi 2 1, so 

no acceptable theory of the form (21) has a linear trajectory. The theory 

with constant total cross section (p, = 1) must be 

GO(E,;2) = E 

E2 +boT2 ’ 
(25) 
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which has familiar d-t pole trajectories. If the interaction has 

derivative couplings as in (2), then a = 2, and we learn 

PI =p2+$ 

while the absence of counterterms not in L means p2 < 213 and a 

falling uT(s ) - (log s ) 
-i/3 or faster: we reject this solution. It is clear 

that the renormalization group bootstrap is quite thorough in selecting 

out very limited sets of satisfactory theories. 

Perhaps it is useful to end with a word of caution. In more elaborate 

theories than the simple models we have examined in this note, one may 

have more than one dimensionless coupling y. In that case the condition 

of infrared freedom and the power counting arguments become more 

intricate and are surely less definite in singling out a unique theory. 

Nevertheless their expression through the bootstrap will greatly restrict 

the class of allowed models. The attendant reduction of ambiguity in the 

formulation of models, the self-consistency of the input, and the ability 

to calculate corrections to whatever accuracy desired are indeed attractive. 

As a final virtue the attitude presented here enables one to depart from 

the problematic nature9 of the e-expansion resorted to in Refs. 3 and 4. 

I have enjoyed fruitful discussions on these matters with B. W. Lee, 

F. Zachariasen, and all members of the NAL Reggeon Field Theory 

Workshop. 
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